If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8p^2=14
We move all terms to the left:
8p^2-(14)=0
a = 8; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·8·(-14)
Δ = 448
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{448}=\sqrt{64*7}=\sqrt{64}*\sqrt{7}=8\sqrt{7}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{7}}{2*8}=\frac{0-8\sqrt{7}}{16} =-\frac{8\sqrt{7}}{16} =-\frac{\sqrt{7}}{2} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{7}}{2*8}=\frac{0+8\sqrt{7}}{16} =\frac{8\sqrt{7}}{16} =\frac{\sqrt{7}}{2} $
| 0=7;(n-+)=n+5 | | 4x-7-2x=2 | | -7-5b=-7b+9 | | 9x+18=-15 | | 67=-3y+15 | | 2x+50+6x+2=90 | | x2=2x+8 | | -10-5f=9f+6 | | 9.8d+8d-4.6d+2.9d=16.1 | | 4(t/8+5=7 | | (3x+17)=x | | 0.8x-1.4=-1.16 | | (2x+8)=x | | 13x+11x-19=209 | | 29+n=-108 | | 5j+j-6=18 | | -9c-3=7-7c | | (2y+17)=y | | 2(-12x-4)=4x-8 | | 3x2+8x+4=0 | | 5x^2=7-3x | | (x-5)/3=2x+1 | | Q=2850-0.25p | | w+3.8=-9 | | 3y-2=1y+6 | | 48=x+-13 | | 2x2+3=5x | | P=2.5m+35= | | 18-10t=-11t | | n÷18=72 | | -3(-3x+5)+4x+2=-1 | | 36+n=76 |